

ISSN 2348 - 8034 Impact Factor- 5.070

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES ESTIMATION OF LIPOPHILICITY OF SOME ALCOHOLS USING TOPOLOGICAL INDICES QSAR STUDIES

Asmita Sharma

Department of Chemistry, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, India

ABSTRACT

In This paper, I used different topological indices for modeling of lipophilicity of a series of alcohols. A wide variety of indices like the Weiner(W), The Padmakar Iwan (PI) index, Kier and Hall valence connectivity indices, Randic connectivity indices and Balaban and Balaban type indices were used for obtaining statistically significant model. The statistically significant models are governed by a variety of statistical parameters. The regression analysis has shown that out of pool of topological indices used, the topological indices W and PI in combination with connectivity indices given an excellent result. The results indicate that lipophilicity of given series of alcohols can be successfully modeled by using topological indices W and PI in combination with connectivity indices as correlating parameters.

The best model has excellent statistic as well as predictive power. The predictive power of these proposed models was discussed on the basis of cross-validation parameters.

Keywords: Topological indices, Lipophilicity, QSAR.

I. AIM & BACKGROUND

In the last decades, several scientific researchers have been focused on studying how to catch and convert by a theoretical pathway the information encoded in the molecular structure into numbers called molecular descriptors. These are used to establish quantitative relationships between structures and properties, biological activities and other properties i.e. QSAR/QSPR. A graph theoretical approach to QSAR is based on the use of topological indices for encoding the structural information ¹⁻⁵. Topological indices are numerical descriptors of molecular graph and are sensitive to size, shape, symmetry and heterogencity of atomic environments in the molecule. There is a recent upsurge of interest in the use of topological indices in QSAR studies. These are quite useful in the development of QSAR and capable of predicting the pharmacological as well as toxic properties of bioactive molecules ⁶. The use of these indices in risk assessment of chemicals and toxicology is described by Basak(1999) ^{7.8}. Randic and co workers have shown that graph theoretical techniques could also be used to obtain the chemical shift of nuclei ⁹. Devenbeck(1995) has discussed topological approach to develop models for the prediction of ¹³C NMR chemical shift ¹⁰ Khadikar and coworkers(2002) have discussed the use of PI, W and Sz indices for the prediction of ¹³C NMR chemical shifts ($\sum Cn$) in alkanes and cycloalkanes ¹¹

In QSAR studies no other physiochemical property has attracted as much interest as lipophilicity ^{12,13} This is due to its direct relationship to stability in aqueous phases, to membrane permeation and its entropic contribution to binding.

In view of the above, we have undertaken the present investigation in which I have modeled lipophilicity (log p) of 32 alcohols using topological indices. Our aim is to construct mathematical models for predicting lipophilicity (log p) of alcohols by taking different combination of topological indices.

ISSN 2348 - 8034 Impact Factor- 5.070

II. MATERIAL AND METHODS

Lipophilicity: 32 alcohols are used in the study. Their lipophilicity (log P) indices are taken from the previous work reported in Literature^{14.}

Topological indices	: A set of topological indices as given below are used in the
	investigation.
Weiner Index	: W
Padmakar Ivan Index	: PI
Randic Connectivity Indices	$: {}^{0}\chi_{2} {}^{1}\chi_{2} {}^{2}\chi_{2} {}^{3}\chi_{2}$
Balaban Indices	: J, Jhet p, Jhet v, Jhet e, Jhet m, J het z
Weiner Index Padmakar Ivan Index Randic Connectivity Indices Balaban Indices	: W : PI : ${}^{0}\chi$, ${}^{1}\chi$, ${}^{2}\chi$, ${}^{3}\chi$: J, Jhet p, Jhet v, Jhet e, Jhet m, J het z

There indices are calculated using DRAGON Software ¹⁵. The structure optimation is made using ACD labs ¹⁶. The expressions used for the calculation of these indices are available in the literature. Regression Analysis: I have adopted maximum R^2 method. The models giving significant R^2 values were selected using NCSS software ¹⁷

III. RESULT AND DISCUSSIONS

The values of Lipophilicity and topological indices of 32 alcohols are shown in Table I. The results obtained by regression analysis of the data are discussed below.

Modeling log P using W, PI and $^{0}\chi$

A stepwise regression analysis using the above parameters is done. Models having R = 0.49 or higher were selected by NCSS software, out of which a biparametric model consisting of $^{0}\chi$ and PI is statistically more significant. The biparametric model is given as

 $\log P = -2.3426 (\pm) 0.5142 - 0.0217 (\pm 0.0121) PI + 0.7990 (\pm 0.1516) \sqrt[0]{\chi}$

n = 32, Se = 0.3444, R = 0.9199, F = 79.8397, Q = 2.6710

Here and thereafter n is number of compounds used, Se is standard error of estimation R is multiple correlation coefficient, F is Fisher's statistics and Q is Poglian's quality factor.

Modeling log P using W, PI, ${}^{0}\chi$, ${}^{1}\chi$, ${}^{2}\chi$

Five models selected by NCSS software are shown in Table II. The triparemetric model using W, PI and $^{1}\chi$ has the values of R² and R²_A as 0.8859 and 0.8737 respectively.

In pentaparametric model also there is a decline in the value of R^2_A considering this the triparametric model is supposed to be the best:

log P = -1.8178 - 0.0442 (± 0.0080) w + 0.0695 (±0.0146) PI + 1.1198 (± 0.2072) $^{1}\chi$ n = 32, Se = 0.3036, R = 0.9406, F = 71.5831, Q = 3.0981

Modeling log P using W, PI and Balaban indices

The value of R_A^2 goes on increasing up to the IV th model and then declines, considering all this the tetraparametric model consisting of W, PI, J and Jhetm is found to be good model.

$$\begin{split} \log P &= 1.5339 \ (\pm 0.6057) - 0.0419 \ (\pm 0.0154) W + 0.1039 \ (\pm 0.0319) \ PI \\ &+ 5.6050 \ (\pm 0.2307) J - 5.7634 \ (\pm 1.3354) \ Jhet M \\ n &= 32, \ Se &= 0.3265, \ R &= 0.9335, \ F &= 45.7350, \ Q &= 2.8591 \end{split}$$

IV. VALIDATION

In statistics and chemometrics several validation techniques have been proposed in the last few decades in order to estimate the model prediction capabilities. A model with good statistics does not necessarily mean that it will have good predictive power too. Both the qualities good statistics and good predictive power are necessary for a perfect model. The predictive power of the model can be obtained by calculating Pogliani's quality factor Q.The higher the

ISSN 2348 - 8034 Impact Factor- 5.070

value of R and lower the value of Se, the better will be the predictive power of the model. The values of Q for all the models are shown in table IX. By considering the values of Q, the models can be ranked (from the best to the worst) with the following order,2,3,1, The same ranking can be obtained from the values of R.

Another parameter used for validation purposes is PRESS i.e. Predictive Error of Sum of Squares. It is the sum of the squared difference between the experimental response and the response predicted by the regression model. It is one of the most important cross validated parameters.

PRESS should be smaller than SSY (Sum of squares of deviations of each activity). The ratio smaller than 0.4, indicates statistically significant model. In the present case the model numbers 2 have values around 0.13 indicating their excellent predictive power. Higher the value of R^2cv higher the predictive power of the model. Once again R^2cv is in favor of models 2.

V. CONCLUSION

From the aforementioned results and discussion, I conclude that lipophilicity (logP) of alcohols can be successfully modeled by using topological indices W and PI in combination with ${}^{0}\chi$, ${}^{1}\chi$ and ${}^{2}\chi$ as correlating parameters. This Tri parametric model has excellent statistics as well as predictive power.

Compound	log P	¹³ C NMR shift	W	PI	0X	1X	2X	0X V	1X V	2X V	3X	3X V	J	Jhet Z	Jhe tM	Jhe tv	Jhe te	Jhet p
methanol	- 0.7 64	49	1	0	2	1	0	1.44 72	0.4 472	0	0	0	1	1.3 33	1.3 32	0.5 12	1.3 27	0.45 5
ethanol	0.2 35	57	4	2	2.7 071	1.4 142	0.70 71	2.15 43	1.0 233	0.31 62	0	0	1	1.3 33	1.3 32	0.5 12	1.3 27	0.45 5
propanol	0.2 94	63.6	1 0	6	3.4 142	1.9 142	1	2.86 14	1.5 233	0.72 36	0.5	0.2 24	1.9 75	2.1 22	2.1 22	1.5 7	2.1 2	1.49 2
butanol	0.8 23	61.4		$\frac{1}{2}$	4.1 213 4.8	2.4 142	1.35 36	3.56 85 4.27	2.0 233 2.5	1.07 72 1.43	0.7 07	0.5	2.1 91	2.2 9	2.2 9	1.8 86 2.1	2.2 89	1.82 2
pentanol	52 1.8	61.8	5	0 3	284 5.5	142 3.4	71 2.06	4.98	233 3.0	07 1.78	57 1.2	62 1.0	39 2.4	11 2.5	2.4 11 2.5	2.1 06 2.2	2.4 1 2.5	2.03 5 2.22
hexanol	81 0.1	61.9	6	0	355 3.5	142	07	27 3.02	233 1.4	43 1.09	07	12	47 2.3	01 2.5	01	66 1.7	01 2.5	4
1sopropanol	54 0.6 03	63.4 68.7	9 1 8	6 1 2	4.2 845	321 2.2 701	1.80 21	46 3.73 17	129 1.9 509	37 1.25 73	0 0.8 16	0 0.5 91	24 2.5 4	38 2.6 82	37 2.6 82	2.1 2.7	34 2.6 8	5 2.04 4
2-pantanol	1.1 32	67	3 2	2 0	4.9 916	2.7 701	2.18 25	4.43 88	2.4 509	1.63 77	0.8 66	0.7 06	2.6 27	2.7 24	2.7 24	2.3 26	2.7 23	2.26 1
2-haxanol	1.6 61	67.2	5 2	3 0	5.6 987	3.2 701	2.53 61	5.14 59	2.9 509	1.99 12	1.1 35	0.9 75	2.6 78	2.7 47	2.7 47	2.4 53	2.7 46	2.40 2
3-pentanol	1.1 32 1.6	73.8	1 5	2 0 3	916 5.6	081 3.3	1.92 17 2.30	4.45 88 5.14	2.4 889 2.9	03 1.85	1.3 94 1.4	42 1.0	2.7 54 2.8	2.8 64 2.9	2.8 64 2.9	2.4 19 2.5	2.8 63 2.9	2.54 8 2.51
3-haxanol	61 2.1	72.3	0 7	0	987 6.4	081 3.8	21 2.65	59 5.85	889 3.4	07 2.20	78 1.7	93 1.3	32 2.8	13 2.9	13 2.9	73 2.6	12 2.9	6 2.61
3-heptanol	9 2.1 9	72.6	6 7 5	$\frac{2}{4}$	058 6.4 058	081 3.8 081	56 2.68 25	3 5.85 3	889 3.4 889	43 2.23 12	47 1.5 63	62 1.2 44	62 2.9 2	23 2.9 85	23 2.9 84	62 2.7 08	22 2.9 84	6 2.66
4-octanol	2.6 8	70.9	1 0	5 6	7.1 129	4.3 081	3.03 61	6.56 01	3.9 889	2.58 47	1.8 32	1.5 13	2.9 55	3.0 06	3.0 06	2.7 84	3.0 05	2.00 2.74 5

454

Table 1: The values of Lipophilicity and topological indices of alcohols

ISSN 2348 - 8034 Impact Factor- 5.070

[FRTSSDS- June 2018] DOI: 10.5281/zenodo.1321898

			8															
			1															
	1.5		4	7	7.8	4.8	3.38	7.26	4.4	2.93	2.1	1.7	2.9	3.0	3.0	2.8	3.0	2.82
5-nananol	72	71.1	9	2	2	081	96	72	889	83	01	82	98	41	41	55	4	2
	0.8		1	1	4.2	2.2	1.80	3.73	1.8	1.57	0.8	0.3	2.5	2.6	2.6	5.1	2.6	2.05
isobutanol	05	68.9	8	2	845	701	21	17	792	64	16	65	4	74	73	41	72	9
	0.5		1	1				3.94	1.7	2.17			3.0	3.2	3.2	2.4	3.2	2.34
t-butanol	32	68.4	6	2	4.5	2	3	72	236	08	0	0	24	28	28	58	25	8
	1.6		2	2	5.2	2.5	2.91	4.65	2.1	2.71	1.0	0.4	3.1			2.7	3.2	2.67
neopentanol	64	72.6	8	0	071	601	42	43	698	88	61	74	68	3.3	3.3	6	98	3
	0.6		5	3	5.6	3.3	2.30	5.14	2.9	2.07	1.4	1.0	2.8	2.9	2.9	2.5	2.9	2.53
2-me-pentanol	93	66.9	0	0	987	081	21	59	172	64	78	93	32	05	05	89	04	5
	1.2		3	2	4.9	2.7	2.18	4.43	2.3	1.90	0.8	0.7	2.6	2.7	2.7	2.3	2.7	2.27
3-me-butanol	8	60.2	2	0	916	701	25	88	792	61	66	06	27	17	16	41	15	8
	1.2		2	2	5.1	2.6	2.48	4.60	2.3	1.98	1.3	0.9	2.9	3.1	3.1	2.6	3.1	2.53
3-me-2-butanol	8	72	9	0	547	427	8	19	236	46	33	65	93	18	18	13	16	3
	1.6		3	2	4.9	2.7	2.18	4.43	2.4	1.63	0.8	0.7	2.6	2.7	2.7	2.3	2.7	2.26
4-me2-butanol	87	65.2	2	0	916	701	25	88	509	77	66	06	27	24	24	26	23	1
	1.6		4	3	5.8	3.1	2.62	5.30	2.8	2.21	1.7	1.1	3.1	3.2	3.2	2.8	2.2	
4-me-3-pantanol	87	77.3	6	0	618	807	95	9	616	96	82	88	44	43	43	32	42	764
	1.8		4	3	5.9	3.0	3.31	5.36	2.6	3.03		0.8	3.1	3.2	3.2	2.8	3.2	
3,3di me-butanol	08	58.9	6	0	142	607	07	14	698	43	1	62	54	42	42	65	41	2.8
2,3di me-2-	1.5		4	3	6.0	2.9	3.52	5.52	2.6	2.80	1.7	1.4	3.5	3.6	3.6	3.1	3.6	3.07
butanol	29	72.2	2	0	774	434	07	46	67	84	32	13	41	65	65	56	64	3
3,3 di me-2-	1.4		4	3	6.0	2.9	3.52	5.52	2.6	3.04	1.7	1.2	3.5	3.6	3.6	3.1	3.6	3.08
butanol	8	74.8	2	0	774	434	07	46	242	2	32	53	41	6	6	66	58	4
4,4 di-me-3-	2.1		4	3	5.8	3.1	2.62	5.30	2.8	2.21	1.7	1.1	3.1	3.2	3.2	2.8	3.2	2.76
butanol	54	80.9	6	0	618	807	95	9	616	96	82	88	44	43	43	32	42	4
2,4,di me 3-	2.1		6	4	6.7	3.5	3.34	6.17	3.2	2.97	2.1	1.3	3.4	3.5	3.5	3.1	3.5	3.11
pantanol	48	80.4	5	2	321	534	72	93	343	86	03	66	64	53	53	78	52	5
2,3,3tr-me-2-	1.9		5	4		3.2		6.44	2.9	3.80	2.2	1.8	4.0	4.1	4.1	3.6	4.1	
butanol	96	74.1	8	2	7	5	4.5	72	736	9	5	53	2	36	36	52	35	3.57
2,4,4 t-me-	2.6		8	5	7.6	3.8	4.39	7.10	3.5	4.05	2.3	1.5	3.8	3.9	3.9		3.9	3.53
3pentanol	15	82.8	6	6	547	541	87	19	349	49	66	19	78	63	63	3.6	62	7
			1															
2,2,4,4tetrame-	3.0		1	7	8.5	4.1	5.45	8.02	3.8	5.13	2.5	1.6	4.2	4.3	4.3	3.9	4.3	3.90
3pentanol	82	84.7	1	2	774	547	37	46	355	46	98	41	31	12	12	66	11	6

Table 2 : Model using W, PI, & OX (Model-1)

Model	Se	R2	R2A	F
⁰ χ	0.357007	0.82913	0.823442	145.5802
PI, ⁰ χ	0.34439	0.8463	0.8357	79.8397
W, PI, 0 χ	0.35047	0.8463	0.829845	51.39553

Table 3 : Model using W,PI,0X,1X and 2X (Model-2)

Model	Se	R2	R2A	F
PI	0.473721	0.699158	0.68913	69.72012
PIJ	0.412518	0.779476	0.764267	51.25234
W, PI, OX	0.350474	0.846311	0.829845	51.39553
W, PI, J, Jhet m	0.326487	0.871392	0.852339	45.73502
W, PI, J, Jhet m, Jhet Z	0.33199	0.871945	0.847319	35.40758

455

ISSN 2348 - 8034 Impact Factor- 5.070

Table IV : Model using Balaban Indices (Model-3)									
Model	Se	R2	R2A	F					
J, Jhet m	0.5153	0.6383	0.6263	52.9592					
J, Jhet m, Jhet Z	0.4173	0.7736	0.758	49.5701					
J, Jhet m, Jhet Z, Jhet V	0.4212	0.7779	0.7541	32.7024					
J, Jhet m, Jhet Z, Jhet V, Jhet e	0.4229	0.7841	0.7521	24.5193					
J, Jhet m, Jhet Z, Jhet V, Jhet e, Jhet P	0.431	0.7841	0.7426	18.8891					
	0.4365	0.7871	0.736	15.4054					

Table 5 : Cross validation parameters of the Three models selected for estimating log P of alcohols

Model No.	R	Q	PRESS	SSY	Press/SSY	R ² cv	PE
1	0.9199	2.670	3.4397	20.8959	0.1646	0.8353	0.0179
2	0.9406	3.0981	2.5532	91.7772	0.1291	0.8709	0.0133
3	0.9335	2.8591	2.8782	19.448	0.1480	0.8520	0.0150

REFERENCES

- [1] Trinajstic, N.; (1983) Chemical Graph Theory, CRC Boca Raton, FL, ; vol. II chapter 4
- [2] Sabljic, A.; rinajstic, N.; (1981) Acta Pharm. Jugosl., 31, 189
- [3] Balaban, A.T.; Motoc. I. Bonchev, D.; Mekenyan, O.; (1983) Topics Curr. Chem., 114, 21
- [4] Hansen, P.J.; (1988) Jurs, P.C. J.Chem. Educ., 65, 575
- [5] Randic, M.; (1990) J. Math. Chem., 4, 157
- [6] Khadikar P.V.; Phadnis, A.; Shrivastava, A.;(2002) "QSAR study on Toricity to Aqueous organisms using the PI Index", Biorganic and Medicinal chemistry, 101181 1188
- [7] Gate, B.D.; Basak, S.C.; (1997) SAR and QSAR in Environ. Res., 7, 117
- [8] Basak, S.C.; Bertelsen, S.; Grunwald, G.D.; (1995) Toxicology Letters, 79, 239.
- [9] Randic, M.; (1983) Int. J. Quantum Chem., 23, 1707
- [10]Duvenbeck, C.;(1995)''Topological and Geometrical Approach to Develop Models for Prediction of ¹³C NMR shifts'', Bochum: GER
- [11]Khadikar, P.V.; Bajaj, A.V.; Mandloi, D.;(2002,) "Prediction of ¹³C nuclear magnetic resonance chemical shifts (Σ^{13} cn) in alkanes and cycloalkanes." Indian J. Chem. 41A, 2065-2067
- [12]K.A. Dill,;(1990), Science, 250-297
- [13]P.J. Taylor,;(**1990** Quantitative drug design, Vol. 4 of comprehensive Medicinal chemistry, Pergamon Press, Oxford, PP 241-294
- [14]Khadikar, P.V.; Sharma, V.; Verma, R.G.; (2005), "Novel estimation of lipophilicity using ¹³C NMR chemical shifts as molecular descriptor". Bioorganic and medicinal chemistry letters 15, 421-425
- [15]DRAGON: http:// disat. Unimib. It./chem./dragon.com
- [16]ACD labs: http://www.acdlabs.com
- [17]NCSS: NCSS, <u>http://www.ncss.com</u>
- [18]Selassie, C.; Verma, R.P., (2010)History of quantitative structure–activity relationships, Burger's Medicinal Chemistry, Drug Discovery and Development.
- [19]Martin Michalik,;(2016)" The validation of quantum Chemical lipophilicity prediction of alcohols "Acta Chimica solvaca 9(2),89-94.
- [20]Saadi saaidpour ,; (2014)" Prediction of Drug lipophilicity using back propogation artificial neural network modeling" (30)2.
- [21]Bernard Tesla,;Pieme Alain corncept,;Patric Gaillard,;" Lipophilicity of Molecular Modeling " (2017),Pharmaceutical Research 13(3), 335-343.

